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ABSTRACT

In this paper, we discuss the use of a sensitivity equation method to compute derivatives

for optimization based design algorithms. The problem of designing an optimal forebody

simulator is used to motivate the algorithm and to illustrate the basic ideas. Finally, we

indicate how an existing CFD code can be modified to compute sensitivities and a numerical

example is presented.
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1 Introduction
A largenumberof identification,controlanddesignproblemsmaybe formulatedasinfinite
dimensionaloptimizationproblems. Theseproblemsarisein almostall fieldsof science
andengineeringandrangein scopefrom inverseproblemsin seismology,to LQR and H °°

control, to shape optimization in fluid/structure dynamics. See [4,7] for typical applica-

tions. Although there are numerous approaches to solving these problems, each approach

requires that some type of approximation be introduced at some point in the design pro-

cess. Moreover, it is often the case that some iterative scheme is needed to solve the state

equations (in black-box methods [3,8]) and the adjoint equations (in adjoint and "one-shot"

methods [9]). Also, the optimization algorithm may itself be iterative. In any case, the

development of computational methods for optimal design and control can produce several

levels of approximation and the convergence properties of the overall algorithm are very

much dependent on the approximations. In this paper we concentrate on the problem of

computing accurate sensitivities for gradient based optimization algorithms. In order to

keep the paper short and, at the same time illustrate the basic idea, we concentrate on a

particular application. We give a brief description of the problem and use this problem to

motivate the algorithm presented below.

2 Optimal Design of a Forebody Simulator

This problem is a 2D version of the problem described in [1,2,6]. The Arnold Engineering

Development Center (AEDC) is developing a free-jet test facility for full-scale testing of

engines in various free flight conditions. Although the test cells are large enough to house

the jet engines, they are too small to contain the full airplane forebody and engine. Thus,

the effect of the forward fuselage on the engine inlet flow conditions must be "simulated."

One approach to solving this problem is to replace the actual forebody by a smaller object,

called a "forebody simulator" (FBS), and determine the shape of the FBS that produces

the best flow match at the engine inlet. The 2D version of this problem is illustrated in

Figure 1 (see [1,2,5,61).

The underlying mathematical

and energy. For inviscid flow, we

where

model is based on conservation laws for mass, momentum

have that

r- =o (l)

Q= m , Ft = mu + P and F2= / nv+P ]OlO _

(E + P)u ] \ (E + P)v /

('2)

The velocity components u and v,

M are related to the conservation variables, i.e., the components of the vector Q, by

u=--, v=-, P=(7- 1) E- p(u 2+v 2 ,
p P

T=7(7-l)(E-½(u2+v2)_ and M2= u2 +v------_
\p / ' T

the pressure P, the temperature T, and the Mach number

(3)
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FIGURE 1.

At the inflow boundary, we want to simulate a free-jet, so that we specify the total

pressure P0, the total temperature To, and the Mach number Mo. We also set v = 0 at

the inflow boundary. If ul, P1, and TI denote the inflow values of the x-component of the

velocity, the pressure, and the temperature, these may be recovered from To, P0 and M0 by

7"/ = To PI -- Po and u_ = M_Tt = M_To (4)

(1 + 7--_-1-_1Mg) ' (1 + 7-_M0_)@r ' (1 + 7-_Mg) "

The components of Q at the inflow may then be determined from (4) through the relations

it 2

7PI ml = plUl , nl = 0 and E1 - PI + pl 2 . (5)
P_=-7'I ' ' 7- 1

The forebody is a solid surface, so that the normal component of the velocity vanishes,

i.e,,

unx + vn2 = 0 on the forebody, (6)

where nl and n2 are the components of the unit normal vector to the boundary. Note that

we impose (6) on the velocity components u and v, and not on the momentum components
m and n. Insofar as the state is concerned, it is clear that it does not make any difference

whether (6) is imposed on m and n or on u and v, since m = pu and n = pv and p -¢ 0. It

can be shown that it does not make any difference to the sensitivities as well.

Assmne that at x = _ the desired steady state flow 0 = Q(y) is given as data on the

line (called the Inlet Reference Plane)

IRP = {(x, y)l = < y <

Also, we assume here that the inflow (total) Mach number M0 can be used as a design

(control) variable along with the shape of the forebody. Let the forebody be determined

by the curve F = P(x), _ < z _<¢_ and let p = (M0, I'(.)). The problem can be stated as the

following optimization problem:
Problem FBS. Given data (_ = {_(y) on the IRP, find the parameters p* = (M_, P*(.))

such that the functional

J(p) -- _ IlQoo(_, y) ' Q(y)ll2dy

2

i
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is minimized, where Qoo(z, y) = Qo_(x, y,p) is solution to the steady state Euler equation

G(Q,p)-- a--_FI+0-_F2=0.

Clearly the statement of the problem is not complete. For example, one should carefully

specify the set of admissible curves F(.) and questions remain about existence, uniqueness

and integrability of "the" solution Qoo. We will not address these issues in this short note.

Most optinfization based design methods require the computation of the derivatives

°Qo_(x, y,p). These derivatives are called sensitivities and various schemes have been de-
Op

veloped to approximate the sensitivities numericM]y (see [3,5,10,11]). A common approach

is to use finite differences. In particular, the steady state equation (8) is solved for # and

again for # + Ap and then _Qo_(x, y,#) is approximated by [q_(_'V'P+AP)-q=(_'V'_;)]ap. This

method is often costly and can introduce large errors. Another approach is to first derive

an equation (the sensitivity equation) for Q' = _Q_(x, y, p) and then numerically solve this
equation. We shall illustrate this approach for the forebody design problem _nd present a

comparison of the two methods.

3 Sensitivities with Respect to the Inflow Mach Number

First, we consider the design parameter M_. Thus, we will derive equations for the sensi-

tivity

pl

m t

Tll
(7)

where
Op Om n' On OE

P'- -OM_ ' m' = OM_ ' - OM_ ' and E'- OM2o . (8)

The differential equation system (1) has no explicit dependence on the design param-

eter M02, so that equations for the components of Q' are easily determined by formally

differentiating (1) with respect to M02. The result is the system

aQ' aF_ aF_
a---_-+ _ + _ = 0, (9)

where

( m, / ( /mu' + m'u + P' nu' + n'u (10)
my, + .,,v / and = + "'v + P' / '

(E+ P)u'+ (E' + P')u/ (E + P)v' + (E' + P')v/

and where,

COu COy OP cOT

u' - cOM 2 ' v' - cOM _ ' P ' - cOM _ ' and T ' = -aM-----_o, (11)

and where, through (3), the sensitivities (8) and (11) are related by

1 m

u_ = -m _ _ --p_,
p p2
1 n

Vl = _nt_ __pr

p p:_ '

P'--(7-1)(E' i, 2 p(uu' vv'))- 2P (u + v2) - + ,

and T' = 7(7 -1) (_ E' - Ep' - (uu' + vv'))p2

3

(12)



Note that (9) is of the sameform as(1), with a differentflux vector.In particular, (9)
is in conservationform. As a result of the fact that (9) is linear in the primed variables,

and that by (12) u', v', and P' are linear in the components of Q', (9) is a linear system in

the sensitivity (7), i.e., in the components of Q'.

Now, we need to discuss the boundary conditions for Q'. Except for the inflow condi-

tions, all boundary conditions are independent of the design parameter M0L Thus, the latter

may be differentiated with respect to M_ to obtain boundary conditions for the sensitivities.

For example, at the forebody where (6) holds, we simply would have that

ulnl q- vtn2 = 0 on the forebody. (13)

Similar operations yield boundary conditions for the sensitivities along symmetry lines,

other solid surfaces, and at the outflow boundary. Note that if instead of (6), one interprets

the no penetration condition as one on the momentum, i.e., mm + nn2 = 0 on the forebody,

then instead of (13) we would have that

re'n1+ n'n2 = 0 on the forebody (14)

which is seemingly different from (13). However, (6) and (12) can be used to show that

m'm + n'n2 = p(u'm + v'n2) + p'(un_ + vn_) = p(u'm + v'n2) (15)

so that, since p ¢0, (13) and (14) are identical.

The inflow boundary conditions for the sensitivities may be determined by differentiat-

ing (4) and (5) with respect to the design parameter Me_. Note that this parameter appears

explicitly in the right-hand-sides of the equations in (4) and (5). Without difficulty, one

finds from (5) that

-: where, from (4),

!

I

1 p,n_.=0, and E_=_ I+ u_p_+plu,u' I,

({6)

To p_ = _ 7-7-!M2"_ ,
T[=- (l+Z-_M3)2 ' (I+ 2 0;

v/_+ M0 T' v_0 3 (1+(3,_1)M02).
u} = 2M----o _ 1 = 2M0(1 + :z_-221M02)_

and

(17)

4 Sensitivities with Respect to the Forebody Design Parameters

We assume that the forebody is described in terms of a finite numl)er of design parameters

which we denote by-Pk, k = 1,..., K, and that the forebody may be described by the relation

y=O(x;P_,Pa,...,Ph), a<_x<_[3 (18)

We expres s the dependence of the State variable Q on the coordinates and the design

parameters by Q Q(t,x,y;M2o,P_,P2,...,PK). W3 have already seen what equations can
be used to determine the sensitivity of the state with respect to M_, i.e., for Q'. We

4



now discuss what equations can be used to determine the sensitivities with respect to the

forebody design parameters Pk, k = l,..., K, i.e., for

aQ _ mk

qk--Opk--/nk
\ Ek

(19)

where

Op Om On OE
a_nd Ek-- k=l,...,K. (20)

Pk =--OPk ' mk =--OPk ' nk =--OPk ' OPk '

System (1) has no explicit dependence on the design parameters Pk, so that equations

for the components of Qk are easily determined by differentiating (1) with respect to Pk,

k = I,...,K. This produces the systems, k = 1,...,K, given by

0Q_ 0Fkl 0Fk2 _ 0, (21)
o--T-+ ---bT-_+ Oy

where

Fkl ----
nuk + nku

muk+mku+Pj: and Fk2=
mvk + mkv ] nvk + nkv + Pk

(E + P)uk + (Ek + Pk)u/ (E + P)vk + (Ek + Pk)v

(22)

and where,

Ou Ov OP OT

uk = -_k ' vk = -- 'OPk Pk = -- ,Opk and Tk = --.Opk (23)

Moreover, by (3), the sensitivities (20) and (23) are related by

1 m

uk = --ink -- -"_Pk ,
p p.
1 n

Vk = --f_k -- --gPk ,
p p. )and Tk = 7(7 - 1) E_: - -_pk - (urn: + vv_)

(24)

for k= l,...,K.

All boundary conditions except the one on the forebody also do not depend on the

forebody design paranleters Pk, k = l,..., K. For example, consider the inflow boundary

conditions (4)-(5). Differentiating these with respect to Pk, k = l,..., If yields that

PkI ---- rtlkI = _ikl ---- EkI = Tkz = PkI = UkZ "-- VkZ "- 0, (25)

at the inflow boundary. Now, consider the boundary condition (6) on the forebody. We

have that on the forebody
n i O_

_ (26)
712 OX "

Combining (6) and (26) we have that

0(I)

5



=

along the forebody or, displaying the full functional dependence on the coordinates and

design parameters, we have at a point (x, y) on the forebody, and at any time t,

( )00u t,x,y= ¢(x;P1,P2,...,PK);M20,P1,P2,...,PK -_x(x;PI,P2,"',P_:)
(28)

/ \

--vtt,x,y= ¢(x; P1, P2,...,PK);M_, Pl, P2,..., PK)=O-

We can proceed to differentiate (28) with respect any of the forebody design parameters

Pk, k = 1,...,K. The result is that, along the forebody for k = 1,...,K,

0° 0(0°)
where u, v, and their derivatives are evaluated at the forebody (x, y = ¢(x)).

If an iterative scheme is used to find a steady state solution of this system ((21),

(25), (29)), then we assume that present guesses for the state variables u and v and their

derivatives Ou/Oy and Ov/Oy and for the design parameters M02 and Pk, k = 1,..., K, are

known. It follows that the right-hand-side of (29) is known as well and equation (29), the

boundary conditions along the forebody for the sensitivities with respect to the forebody

design parameters, is merely an inhomogeneous version of (27), the boundary condition

along the forebody for the state.
Let us now specialize to the type of forebodies considered by Huddleston, [5,6], i.e.

K

¢(x;P,,P2,...,PK) = E PkCk(z), (30)
k=l

where Ck(x), k = 1,..., K, are prescribed functions, e.g., Bezier curves. In this case,

0_ ¢,(x) and 0 (0_-k)0-_;: _ = (_), (3_)

and
K

0O dCt
=_ p_-_-(_). (32)

k=l

Combining (29)-(32), one obtains that, at any point (x, (I)(x)) on the forebody and for each

k= l,...,K,

' dx uk--vk =-- "_Y \j=IEPJ dx] Ck--u-_- x + "_y Ok. (33)

For forebodies of the type (30), (33) gives the the boundary conditions along the forebody

for the sensitivities with respect to the forebody design parameters Pk, k = 1,..., K. It is

now clear that, given guesses for the state variables u and v and their derivatives Ou/Oy and

Ov/Oy and for the design parameters M02 and Pk, k = 1,..., K, then the right-hand-side of

(33) is known.

5 Computing Sensitivities using an Existing Code for the State

Suppose one has available a code to compute the state variables, i.e., to find approximate

solutions of (1) along with boundary and initial conditions. In principle, it is an easy matter
to amend such a code so that it can also compute sensitivities.

6



First, let us compare (1) with (9). If one wishes to amend the existing state code that

can handle (1) so that it can treat (9) as well, one has to change the definitions of the flux

functions from those given in (2) to those given in (10). Note that the solution for the state

is needed in order to evaluate the flux functions of (10).

Next, note that (9) and (22) are identical differential equations. Thus, the changes

made to the code in order to treat (9) can also be used to treat (22). In fact, as long as

the differential equation and any other part of the problem specification do not explicitly

depend on the design parameters, the analogous relations will be the same for all the
sensitivities.

The only changes that vary from one sensitivity calculation to another are those that

arise from conditions in which the design parameters appear explicitly. In our example, for

the sensitivity with respect to M_, one must change the portion of the code that treats the

inflow conditions (4)-(5) so that it can instead treat (16)-(17). The only changes needed

to accomplish this are to the data of the inflow conditions. In the problem considered

here, the nature (i.e. what variables are specified) of the boundary conditions at the inflow,

and everywhere else, is not affected. Note that for the sensitivity with respect to M_ the

boundary condition (13) on the forebody is the same as that for the state, given by (6).

For the sensitivities with respect to the forebody design parameters, the inflow boundary

conditions simplify to (25), i.e., they become homogeneous. The boundary condition at the

forebody is now given by (29) or (33). Once again, the nature of the boundary conditions

is unchanged from that for the state, and only the data that is specified is different. For the

inflow boundary conditions, we may still specify the same conditions for the sensitivities,

but now they would be homogeneous. The boundary conditions along the forebody change

only in that they become inhomogeneous, (compare (27) and (33)).

In summary, to change a code for the state so that it also handles the sensitivities, one

must redefine the flux functions in the differential equations, and the data in the boundary

conditions. The changes necessary in the code to account for any particular relation that

does not explicitly involve the design parameters are independent of which sensitivity one

is presently considering.

The previous remarks are concerned only with the changes one must effect in a state

code in order to handle the fact that one is discretizing a different problem when one

considers the sensitivities. We have seen that these changes are not major in nature.

However, there are additional changes that may be needed when one attempts to solve

the discrete equations. In the numerical results presented below we use the finite difference

code "PARC" (see [2,5]) to solve the state and sensit|vlty equations. However, the following

comments apply equally well to other CFD codes of this type.

Since we are interested in the steady design problems, the time derivative in (1) is

considered only to provide a means for marching to a steady state. Now, suppose that at

any stage of a Gauss-Newton, or other iteration, we have used PARC to find an approximate

steady state solution of (1) plus boundary conditions. In order to do this, one has to solve

a sequence of linear algebraic systems of the type

(1 + At "','_harn(n)'_n(n+I)(,] "_h = Q(hn) At B(Q(fl))) '+ n = 0, 1,2, . .., (34)

where the sequence is terminated when one is satisfied that a steady state has been reached

and where Q(h") denotes the discrete approximation to the state Q at the time t = nAt. We

denote this steady state solution for the approximation to the state by Qh. One problem of

the type (34) is solved for every time step. In (34), the matrix A and vector B arise from

7



the spatialdiscretizationof the fluxesandthe boundaryconditions.Both of thesedepend
on the stateat the previoustimelevel.

Havingcomputedasteadystatesolutionby (34),thetaskat handis to nowcomputethe
sensitivities.Wewill focuson Q', the sensitivitywith respectto the inflow Machnumber.
Analogousresultsholdfor thesensitivitieswith respectto theforebodydesignparameters.
Recallthat givenastate,the sensitivityequationsarelinearin the sensitivities.Therefore,
if oneis interestedin thesteadystatesensitivities,insteadof (9) onemaydirectly treat its
stationaryversion

(gF_ OF_
0--S-+ = 0. (3,5)

Since (35) is linear in the components of Q_, one does not need to consider marching

algorithms in order to compute a steady sensitivity. One merely discretizes (35) and solves

the resultant linear system, which has the form

A'(Qh)Q_, = B'(QD, (36)

where Q_, denotes the discrete.approximation to the steady sensitivity. The matrix A' and

vector B' differ from the A and B of (34) because we have discretized different differentia]

equations and boundary conditions. Note that A' and B' in (36) depend only on the steady

state Qh and thus (36) is a linear system of algebraic equations for the discrete sensitivity Q_.

The cost of finding a solution of (36) is similar to that for finding the solution of (34)

for a single value of n, i.e., for a single time step. The differences in the assembly of the

coefficient matrices and right-hand-sides of (34) and (36) are minor. Thus, in theory at

least, one can obtain a steady sensitivity in the same computer time it takes to perform one time step

in a state calculation. If one wants to obtain all the sensitivities, e.g., K + 1 in our example,

one can do so at a cost similar to, e.g., ff + I time steps of the state calculation. This

is very cheap compared to the multiple state calculations necessary in order to compute

sensitivities through the use of difference quotients.

In practice, these "optima!, estimates of speed up are rarely achieved. Moreover, it is

important to note that finite difference (FD) and sensitivity equation (SE) methods do not

necessarily produce the same results. Since the ultimate goal is to find useful and cheap

gradients for optimization, the most important issue is whether or not the SE method

combined with an optimization algorithm produces a convergent optimal design as fast as

possible. We have tested this scheme on the forebody design problem with excellent results.

6 _A Numerical Example

In order to illustrate the use of the SE method in computing sensitivities, we used the

PARC code as described above to find approximate solutions of the sensitivity equations

and compared the results to the finite difference method. In Figure 2 we show the ap-

proximations of y_p re(x, y, M02, P_,/52) for M0 = 2,/5_ = .l and /52 = .15 where the forebody

is described by two Bezier parameters (P1, P2). Both pictures are "converged" estimates.
Note that there are considerable differences between the FD method and the SE method.

Moreover, in Fig_zre 3 we see that not only do the FD and SE methods produce different

_ sensitivities, the value of the step size AP_ can greatly influence the FD approximations.
Finally, we note that the SE method ran 4 to 5 times faster than the FD method. Also,

_lthough space prohibits a discussion of the optimization problem here, we have used the

SE method in a trust region optimization scheme to produce an optimal forebody design

for the 2D problem in [5,6]. These results will appear in a forthcoming paper.

8



7 Conclusions

The problem of computing accurate sensitivities in problems involving solutions to param-

eterized partial differential equations is an important part of optimal design. The goal is to

find derivatives of solutions of partial differential equations with respect to various param-

eters (including domain shapes) and to use these derivatives in some type of optimization

scheme. In almost all practical problems, solutions must be obtained by numerical approx-

imations. This fact leads to "black box" methods for optimal design. In its most basic

form, a black box method produces approximate solutions that are then differentiated (by

finite differences, automatic differentiation, etc.). The sensitivity equation (SE) method

presented here is based on first deriving partial differential equations for the derivatives

and then approximating these equations numerically. Both approaches produce numerical

approximations of the sensitivities. However, the (SE) method can often reduce computa-

tional effort, speed up the calculations and, provided that accurate computational Schemes

can be devised for the sensitivity equations, the derivatives can be computed with the same

degree of accuracy as the state. The 2D optimal forebody simulator problem is an excellent

problem for illustrating these points. The numerical results presented here show that the

(SE) method is potentially applicable to real problems and, at the same time, raises many

interesting theoretical and practical questions.
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